1 | /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. |
2 | |
3 | Licensed under the Apache License, Version 2.0 (the "License"); |
4 | you may not use this file except in compliance with the License. |
5 | You may obtain a copy of the License at |
6 | |
7 | http://www.apache.org/licenses/LICENSE-2.0 |
8 | |
9 | Unless required by applicable law or agreed to in writing, software |
10 | distributed under the License is distributed on an "AS IS" BASIS, |
11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | See the License for the specific language governing permissions and |
13 | limitations under the License. |
14 | ==============================================================================*/ |
15 | |
16 | // HLO instructions are in DAG form and represent the computations that the user |
17 | // has built up via the XLA service interface. They are ultimately lowered |
18 | // in a platform-aware way by traversing the HLO DAG and emitting a lowered |
19 | // form; e.g. see DfsHloVisitor. |
20 | |
21 | #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_ |
22 | #define TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_ |
23 | |
24 | #include <functional> |
25 | #include <iosfwd> |
26 | #include <list> |
27 | #include <memory> |
28 | #include <set> |
29 | #include <string> |
30 | #include <tuple> |
31 | #include <unordered_map> |
32 | #include <unordered_set> |
33 | #include <vector> |
34 | |
35 | #include "tensorflow/compiler/xla/iterator_util.h" |
36 | #include "tensorflow/compiler/xla/literal_util.h" |
37 | #include "tensorflow/compiler/xla/map_util.h" |
38 | #include "tensorflow/compiler/xla/service/dfs_hlo_visitor.h" |
39 | #include "tensorflow/compiler/xla/service/hlo.pb.h" |
40 | #include "tensorflow/compiler/xla/service/hlo_opcode.h" |
41 | #include "tensorflow/compiler/xla/service/hlo_sharding.h" |
42 | #include "tensorflow/compiler/xla/service/name_uniquer.h" |
43 | #include "tensorflow/compiler/xla/types.h" |
44 | #include "tensorflow/compiler/xla/xla_data.pb.h" |
45 | #include "tensorflow/core/lib/core/status.h" |
46 | #include "tensorflow/core/lib/core/stringpiece.h" |
47 | #include "tensorflow/core/lib/gtl/array_slice.h" |
48 | #include "tensorflow/core/lib/gtl/flatmap.h" |
49 | #include "tensorflow/core/lib/gtl/inlined_vector.h" |
50 | #include "tensorflow/core/lib/gtl/iterator_range.h" |
51 | #include "tensorflow/core/platform/logging.h" |
52 | #include "tensorflow/core/platform/macros.h" |
53 | #include "tensorflow/core/platform/types.h" |
54 | |
55 | namespace xla { |
56 | |
57 | class HloComputation; |
58 | class HloModule; |
59 | |
60 | // A bunch of switches that control how the hlo text should be printed. |
61 | class HloPrintOptions { |
62 | public: |
63 | // Constructs the default print options: don't print large constants, don't |
64 | // compact operands, no indentation. |
65 | HloPrintOptions() |
66 | : print_large_constants_(false), |
67 | print_subcomputation_references_(true), |
68 | print_metadata_(true), |
69 | compact_operands_(false), |
70 | print_operand_shape_(true), |
71 | print_program_shape_(true), |
72 | print_percent_(true), |
73 | indent_amount_(0) {} |
74 | |
75 | static HloPrintOptions ShortParsable() { |
76 | return HloPrintOptions() |
77 | .set_print_large_constants(true) |
78 | .set_print_subcomputation_references(true) |
79 | .set_print_metadata(false) |
80 | .set_print_operand_shape(false) |
81 | .set_print_program_shape(false) |
82 | .set_print_percent(false); |
83 | } |
84 | |
85 | // If true, large constants will be printed out. |
86 | HloPrintOptions& set_print_large_constants(bool value) { |
87 | print_large_constants_ = value; |
88 | return *this; |
89 | } |
90 | |
91 | // If true, the names of subcomputations (e.g. a fusion node's fused |
92 | // computation) won't be printed. This makes the resulting text not parsable. |
93 | // |
94 | // A CustomCall's call target is printed even if |
95 | // print_subcomputation_references is false, because the call target isn't an |
96 | // HloComputation. |
97 | HloPrintOptions& set_print_subcomputation_references(bool value) { |
98 | print_subcomputation_references_ = value; |
99 | return *this; |
100 | } |
101 | |
102 | // If true, metatdata will be printed. |
103 | HloPrintOptions& set_print_metadata(bool value) { |
104 | print_metadata_ = value; |
105 | return *this; |
106 | } |
107 | |
108 | // If true, operands' shapes will be printed. |
109 | HloPrintOptions& set_print_operand_shape(bool value) { |
110 | print_operand_shape_ = value; |
111 | return *this; |
112 | } |
113 | |
114 | // If true, program shape of hlo computations will be printed. |
115 | HloPrintOptions& set_print_program_shape(bool value) { |
116 | print_program_shape_ = value; |
117 | return *this; |
118 | } |
119 | |
120 | // If true, names will be printed with prefix '%'. |
121 | HloPrintOptions& set_print_percent(bool value) { |
122 | print_percent_ = value; |
123 | return *this; |
124 | } |
125 | |
126 | // If true, only a part of operands will be printed out, and their names will |
127 | // be omitted (note that in this case the text will not be parsable). |
128 | HloPrintOptions& set_compact_operands(bool value) { |
129 | compact_operands_ = value; |
130 | return *this; |
131 | } |
132 | |
133 | // The indent of the hlo text block. |
134 | HloPrintOptions& set_indent_amount(int value) { |
135 | indent_amount_ = value; |
136 | return *this; |
137 | } |
138 | |
139 | bool print_large_constants() const { return print_large_constants_; } |
140 | bool print_subcomputation_references() const { |
141 | return print_subcomputation_references_; |
142 | } |
143 | bool print_metadata() const { return print_metadata_; } |
144 | bool compact_operands() const { return compact_operands_; } |
145 | bool print_operand_shape() const { return print_operand_shape_; } |
146 | bool print_program_shape() const { return print_program_shape_; } |
147 | bool print_percent() const { return print_percent_; } |
148 | int indent_amount() const { return indent_amount_; } |
149 | |
150 | private: |
151 | bool print_large_constants_; |
152 | bool print_subcomputation_references_; |
153 | bool print_metadata_; |
154 | bool compact_operands_; |
155 | bool print_operand_shape_; |
156 | bool print_program_shape_; |
157 | bool print_percent_; |
158 | int indent_amount_; |
159 | }; |
160 | |
161 | // HLO instructions are the IR used by the high-level compiler. |
162 | class HloInstruction { |
163 | public: |
164 | enum class FusionKind { |
165 | kLoop, // Fused into a loop. |
166 | kInput, // Op's input is fused into the op itself. |
167 | kOutput, // Op's output is fused into the op itself. |
168 | // REQUIRES: At least one operand buffer must be able |
169 | // to alias the output buffer. |
170 | kTransposeDot, // Fused into a dot with transposed operands. |
171 | kCustom, // Custom category for backend-specific fusions that |
172 | // do not match any of the more specific ones. |
173 | }; |
174 | |
175 | ~HloInstruction(); |
176 | |
177 | // Creates an instruction from the given proto. Arguments: |
178 | // |
179 | // module: the module which will contain the instruction. The newly created |
180 | // instruction is *not* added to the module or any computation, however. |
181 | // proto: the proto to convert from. |
182 | // instruction_map: a map from instruction id to HloInstruction*. This map |
183 | // must contain all operands of the newly constructed instruction. |
184 | // computation_map: a map from computation id to HloComputation*. This map |
185 | // must contain all computations which the newly constructed instruction |
186 | // calls. |
187 | static StatusOr<std::unique_ptr<HloInstruction>> CreateFromProto( |
188 | HloModule* module, const HloInstructionProto& proto, |
189 | const tensorflow::gtl::FlatMap<int64, HloInstruction*>& instruction_map, |
190 | const tensorflow::gtl::FlatMap<int64, HloComputation*>& computation_map); |
191 | |
192 | // Creates a parameter-retrieving instruction. |
193 | static std::unique_ptr<HloInstruction> CreateParameter(int64 parameter_number, |
194 | const Shape& shape, |
195 | const string& name); |
196 | |
197 | // Creates a literal constant instruction. |
198 | static std::unique_ptr<HloInstruction> CreateConstant( |
199 | std::unique_ptr<Literal> literal); |
200 | |
201 | // Creates a get tuple element instruction. |
202 | static std::unique_ptr<HloInstruction> CreateGetTupleElement( |
203 | const Shape& shape, HloInstruction* operand, int64 index); |
204 | |
205 | // Creates a trace instruction that logs the input operand in the computation. |
206 | static std::unique_ptr<HloInstruction> CreateTrace(const string& tag, |
207 | HloInstruction* operand); |
208 | |
209 | // Creates a random number generation instruction that fills a shape with |
210 | // random numbers from a given distribution. |
211 | static std::unique_ptr<HloInstruction> CreateRng( |
212 | const Shape& shape, RandomDistribution distribution, |
213 | tensorflow::gtl::ArraySlice<HloInstruction*> parameters); |
214 | |
215 | // Creates a unary instruction (one operand). |
216 | // Precondition: opcode must be a legitimate unary operation. |
217 | static std::unique_ptr<HloInstruction> CreateUnary(const Shape& shape, |
218 | HloOpcode opcode, |
219 | HloInstruction* operand); |
220 | |
221 | // Creates a binary instruction (two operands). |
222 | // Precondition: opcode must be a legitimate binary operation. |
223 | static std::unique_ptr<HloInstruction> CreateBinary(const Shape& shape, |
224 | HloOpcode opcode, |
225 | HloInstruction* lhs, |
226 | HloInstruction* rhs); |
227 | |
228 | // Creates a ternary instruction (three operands). |
229 | // Precondition: opcode must be a legitimate ternary operation. |
230 | static std::unique_ptr<HloInstruction> CreateTernary(const Shape& shape, |
231 | HloOpcode opcode, |
232 | HloInstruction* lhs, |
233 | HloInstruction* rhs, |
234 | HloInstruction* ehs); |
235 | |
236 | // Creates a variadic instruction (variable number of operands). |
237 | // Precondition: opcode must be a legitimate variadic operation. |
238 | static std::unique_ptr<HloInstruction> CreateVariadic( |
239 | const Shape& shape, HloOpcode opcode, |
240 | tensorflow::gtl::ArraySlice<HloInstruction*> operands); |
241 | |
242 | // Creates a map instruction, where the computation (given by the handle) is |
243 | // applied element-wise to every element in operands (across the operands, |
244 | // at a given index) with the same `static_operands`. |
245 | static std::unique_ptr<HloInstruction> CreateMap( |
246 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
247 | HloComputation* map_computation, |
248 | tensorflow::gtl::ArraySlice<HloInstruction*> static_operands = {}); |
249 | |
250 | // Creates a convolution op, where rhs is the convolutional filter |
251 | // and window describes how the filter is applied to lhs. |
252 | static std::unique_ptr<HloInstruction> CreateConvolve( |
253 | const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, |
254 | const Window& window, |
255 | const ConvolutionDimensionNumbers& dimension_numbers); |
256 | |
257 | // Creates an FFT op, of the type indicated by fft_type. |
258 | static std::unique_ptr<HloInstruction> CreateFft( |
259 | const Shape& shape, HloInstruction* operand, FftType fft_type, |
260 | tensorflow::gtl::ArraySlice<int64> fft_length); |
261 | |
262 | // Creates a dot op with operands 'lhs' and 'rhs' with contracting and batch |
263 | // dimensions specified in 'dimension_numbers'. |
264 | static std::unique_ptr<HloInstruction> CreateDot( |
265 | const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, |
266 | const DotDimensionNumbers& dimension_numbers); |
267 | |
268 | // Creates a dot op with operands 'lhs' and 'rhs' that contracts dimension 1 |
269 | // of the LHS with dimension 0 of the RHS with no batch dimensions. Both LHS |
270 | // and the RHS must be of rank 2. |
271 | static std::unique_ptr<HloInstruction> CreateCanonicalDot( |
272 | const Shape& shape, HloInstruction* lhs, HloInstruction* rhs); |
273 | |
274 | // Creates a reduce-precision op, where operand is the data to reduce in |
275 | // precision, and exponent_bits and mantissa_bits describe the precision to |
276 | // reduce it to. |
277 | static std::unique_ptr<HloInstruction> CreateReducePrecision( |
278 | const Shape& shape, HloInstruction* operand, const int exponent_bits, |
279 | const int mantissa_bits); |
280 | |
281 | // Creates a cross replica sum op. |
282 | static std::unique_ptr<HloInstruction> CreateCrossReplicaSum( |
283 | const Shape& shape, |
284 | tensorflow::gtl::ArraySlice<HloInstruction*> operands); |
285 | |
286 | // Creates a conversion instruction, where operand is the data to convert and |
287 | // shape is the target shape for the conversion. |
288 | static std::unique_ptr<HloInstruction> CreateConvert(const Shape& shape, |
289 | HloInstruction* operand); |
290 | |
291 | // Creates a bitcast conversion instruction, where operand is the data to |
292 | // convert and shape is the target shape for the conversion. |
293 | static std::unique_ptr<HloInstruction> CreateBitcastConvert( |
294 | const Shape& shape, HloInstruction* operand); |
295 | |
296 | // Creates an infeed instruction, which reads data of the given shape from the |
297 | // Infeed interface of the device. |
298 | static std::unique_ptr<HloInstruction> CreateInfeed(const Shape& shape, |
299 | const string& config); |
300 | |
301 | // Creates an outfeed instruction, which outputs data. |
302 | static std::unique_ptr<HloInstruction> CreateOutfeed( |
303 | const Shape& shape, HloInstruction* operand, |
304 | tensorflow::StringPiece outfeed_config); |
305 | |
306 | // Creates an asynchronous send instruction with the given channel id, which |
307 | // initiates sending the operand data to a unique receive instruction in |
308 | // another computation that has the same channel id. |
309 | static std::unique_ptr<HloInstruction> CreateSend(HloInstruction* operand, |
310 | int64 channel_id); |
311 | |
312 | // Blocks until data transfer for the Send instruction (operand) is complete. |
313 | // The operand must be kSend. |
314 | static std::unique_ptr<HloInstruction> CreateSendDone( |
315 | HloInstruction* operand); |
316 | |
317 | // Creates an asynchronous receive instruction with the given channel id, |
318 | // which allocates resources to receive data of the given shape from a unique |
319 | // send instruction in another computation that has the same channel id. |
320 | static std::unique_ptr<HloInstruction> CreateRecv(const Shape& shape, |
321 | int64 channel_id); |
322 | |
323 | // Blocks until data transfer for the Recv instruction (operand) is complete |
324 | // and returns the receive buffer. The operand must be kRecv. |
325 | static std::unique_ptr<HloInstruction> CreateRecvDone( |
326 | HloInstruction* operand); |
327 | |
328 | // Creates a slice instruction, where the operand is sliced by the given |
329 | // start/limit indices. |
330 | static std::unique_ptr<HloInstruction> CreateSlice( |
331 | const Shape& shape, HloInstruction* operand, |
332 | tensorflow::gtl::ArraySlice<int64> start_indices, |
333 | tensorflow::gtl::ArraySlice<int64> limit_indices, |
334 | tensorflow::gtl::ArraySlice<int64> strides); |
335 | |
336 | // Creates a slice instruction, where the first operand is sliced by |
337 | // start indices specified in the second operand, and by size specified in |
338 | // 'slice_sizes'. |
339 | static std::unique_ptr<HloInstruction> CreateDynamicSlice( |
340 | const Shape& shape, HloInstruction* operand, |
341 | HloInstruction* start_indices, |
342 | tensorflow::gtl::ArraySlice<int64> slice_sizes); |
343 | |
344 | // Creates a dynamic update slice instruction, which updates a slice |
345 | // of 'operand' with 'update' and 'start_indices'. |
346 | static std::unique_ptr<HloInstruction> CreateDynamicUpdateSlice( |
347 | const Shape& shape, HloInstruction* operand, HloInstruction* update, |
348 | HloInstruction* start_indices); |
349 | |
350 | // Creates a concatenate instruction, where the operands are concatenated on |
351 | // the provided dimension. |
352 | static std::unique_ptr<HloInstruction> CreateConcatenate( |
353 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
354 | int64 dimension); |
355 | |
356 | // Creates a reduce instruction, where the computation (given by the handle) |
357 | // is applied successively to every element in operand. That is, if f is the |
358 | // function to apply (which either takes 2 [accumulator, value] or 3 |
359 | // [accumulator, index, value] arguments) and init is a reduction operator |
360 | // specified initial value (for example, 0 for addition), then this operation |
361 | // will compute: |
362 | // f(f(init, [index0], value0), [index1], value1), ...) |
363 | static std::unique_ptr<HloInstruction> CreateReduce( |
364 | const Shape& shape, HloInstruction* operand, HloInstruction* init_value, |
365 | tensorflow::gtl::ArraySlice<int64> dimensions_to_reduce, |
366 | HloComputation* reduce_computation); |
367 | |
368 | // Creates a reduce-window instruction, where the computation (given |
369 | // by the handle) is applied window-wise at each valid window |
370 | // position in the operand. |
371 | static std::unique_ptr<HloInstruction> CreateReduceWindow( |
372 | const Shape& shape, HloInstruction* operand, HloInstruction* init_value, |
373 | const Window& window, HloComputation* reduce_computation); |
374 | |
375 | // Creates a batch-norm-training instruction. |
376 | static std::unique_ptr<HloInstruction> CreateBatchNormTraining( |
377 | const Shape& shape, HloInstruction* operand, HloInstruction* scale, |
378 | HloInstruction* offset, float epsilon, int64 feature_index); |
379 | |
380 | // Creates a batch-norm-inference instruction. |
381 | static std::unique_ptr<HloInstruction> CreateBatchNormInference( |
382 | const Shape& shape, HloInstruction* operand, HloInstruction* scale, |
383 | HloInstruction* offset, HloInstruction* mean, HloInstruction* variance, |
384 | float epsilon, int64 feature_index); |
385 | |
386 | // Creates a batch-norm-grad instruction. |
387 | static std::unique_ptr<HloInstruction> CreateBatchNormGrad( |
388 | const Shape& shape, HloInstruction* operand, HloInstruction* scale, |
389 | HloInstruction* mean, HloInstruction* variance, |
390 | HloInstruction* grad_output, float epsilon, int64 feature_index); |
391 | |
392 | // Creates a scatter computation that scatters the `source` array to the |
393 | // selected indices of each window. |
394 | static std::unique_ptr<HloInstruction> CreateSelectAndScatter( |
395 | const Shape& shape, HloInstruction* operand, HloComputation* select, |
396 | const Window& window, HloInstruction* source, HloInstruction* init_value, |
397 | HloComputation* scatter); |
398 | |
399 | // Creates a broadcast instruction. |
400 | static std::unique_ptr<HloInstruction> CreateBroadcast( |
401 | const Shape& shape, HloInstruction* operand, |
402 | tensorflow::gtl::ArraySlice<int64> broadcast_dimensions); |
403 | |
404 | // Creates a broadcast-size-one-dimensions instruction. |
405 | static std::unique_ptr<HloInstruction> CreateBroadcastDimOne( |
406 | const Shape& shape, HloInstruction* operand); |
407 | |
408 | // Creates a sequence of instructions that performs an explicit broadcast of |
409 | // the operand to the target shape. |
410 | // |
411 | // Interior HLOs are passed to "adder", but the "root" HLO of the sequence is |
412 | // returned as a unique_ptr for API consistency with other factory methods in |
413 | // this interface. |
414 | // |
415 | // TODO(b/72173833) Ideally HloComputations would always be present, and so |
416 | // the adder being passed by the caller would not be necessary. |
417 | static std::unique_ptr<HloInstruction> CreateBroadcastSequence( |
418 | const Shape& output_shape, HloInstruction* operand, |
419 | const std::function<HloInstruction*(std::unique_ptr<HloInstruction>)>& |
420 | adder); |
421 | |
422 | // Creates a pad instruction, where the operand is padded on the edges and |
423 | // between the elements with the given padding value. |
424 | static std::unique_ptr<HloInstruction> CreatePad( |
425 | const Shape& shape, HloInstruction* operand, |
426 | HloInstruction* padding_value, const PaddingConfig& padding_config); |
427 | |
428 | // Creates a reshape instruction, where the operand is flattened row-major |
429 | // order and then reshaped to the given result shape. |
430 | static std::unique_ptr<HloInstruction> CreateReshape(const Shape& shape, |
431 | HloInstruction* operand); |
432 | |
433 | // Creates a transpose instruction which permutes the operand dimensions. |
434 | static std::unique_ptr<HloInstruction> CreateTranspose( |
435 | const Shape& shape, HloInstruction* operand, |
436 | tensorflow::gtl::ArraySlice<int64> dimensions); |
437 | |
438 | // Creates a while instruction, given a condition computation, a body |
439 | // computation, and the initial value for the input of the computations. For |
440 | // example, shape: S32, condition: i -> i < 1000, body: i -> i * 2, init: 1 |
441 | // corresponds to the C code below. |
442 | // int32 i = 1; int32 result = while(i < 1000) { i = i * 2 } |
443 | static std::unique_ptr<HloInstruction> CreateWhile(const Shape& shape, |
444 | HloComputation* condition, |
445 | HloComputation* body, |
446 | HloInstruction* init); |
447 | |
448 | static std::unique_ptr<HloInstruction> CreateConditional( |
449 | const Shape& shape, HloInstruction* pred, |
450 | HloInstruction* true_computation_arg, HloComputation* true_computation, |
451 | HloInstruction* false_computation_arg, HloComputation* false_computation); |
452 | |
453 | static std::unique_ptr<HloInstruction> CreateGather( |
454 | const Shape& shape, HloInstruction* operand, |
455 | HloInstruction* gather_indices, |
456 | const GatherDimensionNumbers& gather_dim_numbers, |
457 | tensorflow::gtl::ArraySlice<int64> window_bounds); |
458 | |
459 | // Creates a fusion instruction. A fusion instruction contains one or more |
460 | // fused instructions forming an expression with a single root |
461 | // "fused_root". Additional instructions can be added to the fusion |
462 | // instruction with the method FuseInstruction. |
463 | static std::unique_ptr<HloInstruction> CreateFusion( |
464 | const Shape& shape, FusionKind fusion_kind, HloInstruction* fused_root); |
465 | |
466 | static std::unique_ptr<HloInstruction> CreateFusion( |
467 | const Shape& shape, FusionKind fusion_kind, |
468 | tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
469 | HloComputation* fusion_computation); |
470 | |
471 | // Creates a call instruction that applies the given computation on the given |
472 | // operands. "shape" is the resultant shape. |
473 | static std::unique_ptr<HloInstruction> CreateCall( |
474 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
475 | HloComputation* computation); |
476 | |
477 | // Creates a custom call instruction that applies the given custom call target |
478 | // to the given operands. "shape" is the resultant shape. |
479 | static std::unique_ptr<HloInstruction> CreateCustomCall( |
480 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
481 | tensorflow::StringPiece custom_call_target); |
482 | |
483 | // Creates a HostCompute instruction, which records host-side control and |
484 | // data dependencies for use in instruction scheduling. |
485 | static std::unique_ptr<HloInstruction> CreateHostCompute( |
486 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
487 | tensorflow::StringPiece channel_name, const int64 cost_estimate_ns); |
488 | |
489 | // Creates a tuple instruction with the given elements. This is a convenience |
490 | // wrapper around CreateVariadic. |
491 | static std::unique_ptr<HloInstruction> CreateTuple( |
492 | tensorflow::gtl::ArraySlice<HloInstruction*> elements); |
493 | |
494 | // Creates a reverse instruction, which reverses the order of the elements |
495 | // in the specified dimensions. |
496 | static std::unique_ptr<HloInstruction> CreateReverse( |
497 | const Shape& shape, HloInstruction* operand, |
498 | tensorflow::gtl::ArraySlice<int64> dimensions); |
499 | |
500 | // Creates an instance of GatherDimensionNumbers. |
501 | static GatherDimensionNumbers MakeGatherDimNumbers( |
502 | tensorflow::gtl::ArraySlice<int64> output_window_dims, |
503 | tensorflow::gtl::ArraySlice<int64> elided_window_dims, |
504 | tensorflow::gtl::ArraySlice<int64> gather_dims_to_operand_dims, |
505 | int64 index_vector_dim); |
506 | |
507 | // Returns the opcode for this instruction. |
508 | HloOpcode opcode() const { return opcode_; } |
509 | |
510 | // Returns true if this instruction has a side effect. An instruction has a |
511 | // side effect if it uses certain opcodes or calls a computation with a side |
512 | // effect. |
513 | bool HasSideEffect() const; |
514 | |
515 | // Returns the result shape of this instruction. |
516 | const Shape& shape() const; |
517 | |
518 | // Returns the (mutable) result shape of this instruction. |
519 | Shape* mutable_shape() { return &shape_; } |
520 | |
521 | // Returns the ith operand to this instruction. |
522 | const HloInstruction* operand(int64 i) const; |
523 | |
524 | // Returns the ith operand to this instruction. |
525 | HloInstruction* mutable_operand(int64 i); |
526 | |
527 | // Returns the number of operands to this instruction. |
528 | int64 operand_count() const { return operands_.size(); } |
529 | |
530 | // Returns the vector of operands of this instruction. |
531 | using InstructionVector = tensorflow::gtl::InlinedVector<HloInstruction*, 2>; |
532 | const InstructionVector& operands() const { return operands_; } |
533 | |
534 | // Returns the index of 'target' in the operands sequence. |
535 | // Precondition: target must be an operand (or a fatal error will occur). |
536 | int64 operand_index(const HloInstruction* target) const; |
537 | |
538 | // Returns the number of users of this instruction. |
539 | int64 user_count() const { return users_.size(); } |
540 | |
541 | // Returns the users of this instruction. |
542 | const std::vector<HloInstruction*>& users() const { return users_; } |
543 | |
544 | // Returns true if this instruction is a user of 'instruction'. |
545 | bool IsUserOf(const HloInstruction* instruction) const { |
546 | return ContainsKey(instruction->user_set_, this); |
547 | } |
548 | |
549 | // Adds a control dependency from this instruction to the given |
550 | // instruction. This instruction becomes a control predecessor of |
551 | // 'instruction', and 'instruction' becomes a control successor of this |
552 | // instruction. Returns an error status if either of the given instructions |
553 | // does not belong to the same computation. |
554 | // |
555 | // This is used to enforce an additional ordering requirement that is not |
556 | // captured by normal data dependencies, such as ordering among Send or Recv |
557 | // operations to avoid deadlock. |
558 | Status AddControlDependencyTo(HloInstruction* instruction); |
559 | |
560 | // Removes a previously added control dependency from this instruction to |
561 | // 'instruction'. |
562 | Status RemoveControlDependencyTo(HloInstruction* instruction); |
563 | |
564 | // Returns the set of control predecessors (successors) of this |
565 | // instruction. Control predecessors (successors) must execute before (after) |
566 | // the current instruction. |
567 | const std::vector<HloInstruction*>& control_predecessors() const { |
568 | return control_predecessors_; |
569 | } |
570 | const std::vector<HloInstruction*>& control_successors() const { |
571 | return control_successors_; |
572 | } |
573 | |
574 | // Returns true if "other" performs the same computation as this instruction. |
575 | bool Identical( |
576 | const HloInstruction& other, |
577 | const std::function<bool(const HloInstruction*, const HloInstruction*)>& |
578 | eq_operands = std::equal_to<const HloInstruction*>(), |
579 | const std::function<bool(const HloComputation*, const HloComputation*)>& |
580 | eq_computations = std::equal_to<const HloComputation*>(), |
581 | bool layout_sensitive = true) const { |
582 | // An instruction is always identical to itself. |
583 | if (this == &other) { |
584 | return true; |
585 | } |
586 | |
587 | // Identical instruction must have the same opcode, shape, and identical |
588 | // operands. |
589 | if (opcode() != other.opcode()) { |
590 | return false; |
591 | } |
592 | using EqShapeFuncType = bool (*)(const Shape&, const Shape&); |
593 | EqShapeFuncType eq_shapes = |
594 | layout_sensitive ? ShapeUtil::Equal : ShapeUtil::Compatible; |
595 | if (!eq_shapes(shape(), other.shape())) { |
596 | return false; |
597 | } |
598 | if (operands().size() != other.operands().size()) { |
599 | return false; |
600 | } |
601 | |
602 | // Use an explicit loop rather than ContainerEquals, because copying around |
603 | // std::functions may be too expensive in some cases. |
604 | for (size_t i = 0; i < operands().size(); ++i) { |
605 | if (!eq_operands(operand(i), other.operand(i))) { |
606 | return false; |
607 | } |
608 | } |
609 | |
610 | return IdenticalSlowPath(other, eq_computations, eq_shapes); |
611 | } |
612 | |
613 | // Returns whether the instruction has a constant operand. |
614 | bool HasConstantOperand() const; |
615 | |
616 | // Returns whether this instruction does a rank-2 transposition. |
617 | bool IsRank2Transpose() const; |
618 | |
619 | // Replaces the use of this instruction in "user" with "new_producer". Note |
620 | // that there might be multiple uses of this instruction in "user"; all will |
621 | // be replaced. |
622 | Status ReplaceUseWith(HloInstruction* user, HloInstruction* new_producer); |
623 | |
624 | // Replaces the specified operand with new_operand. |
625 | Status ReplaceOperandWith(int64 operand_no, HloInstruction* new_operand); |
626 | |
627 | // Replaces all uses of this instruction with the new producer. If |
628 | // new_producer is a user of this instruction then new_producer remains a use |
629 | // of this instruction to avoid introducing cycles into the graph. |
630 | // |
631 | // If this instruction is the root of its computation, sets the computation's |
632 | // root to new_producer. |
633 | Status ReplaceAllUsesWith(HloInstruction* new_producer); |
634 | |
635 | // Detaches an instruction from its operands. That is, remove the instruction |
636 | // from each operand's user set. This should only be called prior to |
637 | // deallocating the instruction. |
638 | void DetachFromOperands(); |
639 | |
640 | // Performs a postorder DFS visit using this node as the root. If |
641 | // call_finish_visit is true, then DfsHloVisitor::FinishVisit is called when |
642 | // complete. If ignore_control_predecessors is true, instructions only |
643 | // reachable via control dependencies will not be visited, and the postorder |
644 | // will not take control dependencies into account. It is as if the control |
645 | // dependencies didn't exist in the graph at all. |
646 | template <typename HloInstructionPtr> |
647 | Status Accept(DfsHloVisitorBase<HloInstructionPtr>* visitor, |
648 | bool call_finish_visit = true, |
649 | bool ignore_control_predecessors = false); |
650 | Status Accept(ConstDfsHloVisitor* visitor, bool call_finish_visit = true, |
651 | bool ignore_control_predecessors = false) const { |
652 | return const_cast<HloInstruction*>(this)->Accept( |
653 | visitor, call_finish_visit, ignore_control_predecessors); |
654 | } |
655 | |
656 | // Same as Accept() above, but the order of operand and control predecessor |
657 | // visitation is determined by the given operand order; if compare(A, B) == |
658 | // true, A is visited before B. |
659 | using CompareFunction = |
660 | std::function<bool(const HloInstruction*, const HloInstruction*)>; |
661 | Status AcceptWithOperandOrder(DfsHloVisitor* visitor, |
662 | const CompareFunction& operand_order, |
663 | bool call_finish_visit = true); |
664 | |
665 | // Performs a postorder DFS visit using this node as the root. Calls the given |
666 | // visitor function at each instruction. |
667 | Status Accept(const std::function<Status(HloInstruction*)>& visitor_func); |
668 | Status Accept( |
669 | const std::function<Status(const HloInstruction*)>& visitor_func) const; |
670 | |
671 | // Visits all instructions rooted at this instruction using the given visitor |
672 | // in the given order. 'order' must contain at least the set of instructions |
673 | // rooted at this node (ie, those accessible from a DFS traversal from this |
674 | // instruction). Instructions contained in 'order' which are not in the set of |
675 | // instructions rooted at this node are ignored. 'order' must also be a valid |
676 | // topological sort of these instructions (defs appear before uses) though |
677 | // need not be a DFS post-order. |
678 | Status AcceptOrdered(DfsHloVisitor* visitor, |
679 | const std::vector<const HloInstruction*>& order); |
680 | |
681 | // Visit this instruction and only this instruction with the given visitor. |
682 | template <typename HloInstructionPtr> |
683 | Status Visit(DfsHloVisitorBase<HloInstructionPtr>* visitor); |
684 | |
685 | // Returns the literal associated with this instruction. |
686 | // |
687 | // Note: only constant and parameter opcodes have an associated literal. |
688 | const Literal& literal() const; |
689 | |
690 | // Returns the parameter number associated with this instruction. |
691 | // |
692 | // Note: only parameter opcodes have an associated parameter number. |
693 | int64 parameter_number() const { |
694 | CHECK_EQ(HloOpcode::kParameter, opcode_); |
695 | return parameter_number_; |
696 | } |
697 | |
698 | // Returns the dimension sizes or numbers associated with this instruction. |
699 | // |
700 | // Precondition: opcode() is one of: concatenate, reduce, broadcast, reshape, |
701 | // and reverse. |
702 | const std::vector<int64>& dimensions() const; |
703 | int64 dimensions(int64 index) const; |
704 | |
705 | // Accessor for the dimension in which a concatenate HLO should occur. |
706 | // Precondition: opcode() == HloOpcode::kConcatenate |
707 | int64 concatenate_dimension() const; |
708 | |
709 | // Returns the tuple index associated with this instruction. |
710 | // |
711 | // Precondition: opcode() == HloOpcode::kGetTupleElement |
712 | int64 tuple_index() const; |
713 | |
714 | // Returns the first non-GetTupleElement ancestor instruction of 'hlo'. |
715 | // If the first non-GTE ancestor is tuple-shaped, populates 'index' with the |
716 | // (possibly nested) tuple indices used on the path from ancestor to 'hlo'. |
717 | std::pair<const HloInstruction*, ShapeIndex> LatestNonGteAncestorAndIndex() |
718 | const; |
719 | |
720 | std::pair<HloInstruction*, ShapeIndex> LatestNonGteAncestorAndIndex() { |
721 | auto rv = |
722 | const_cast<const HloInstruction*>(this)->LatestNonGteAncestorAndIndex(); |
723 | return {const_cast<HloInstruction*>(rv.first), rv.second}; |
724 | } |
725 | |
726 | // Same as LatestNonGteAncestorAndIndex, but just returns the HloInstruction. |
727 | const HloInstruction* LatestNonGteAncestor() const; |
728 | |
729 | HloInstruction* LatestNonGteAncestor() { |
730 | return const_cast<HloInstruction*>( |
731 | const_cast<const HloInstruction*>(this)->LatestNonGteAncestor()); |
732 | } |
733 | |
734 | // Gets/sets the to_apply HloComputation for Call, Map, Reduce, etc. |
735 | // The setter should only be called by HloModule or HloComputation methods. |
736 | // |
737 | // Precondition: The instruction has a valid to_apply_ field. |
738 | HloComputation* to_apply() const; |
739 | void set_to_apply(HloComputation* to_apply); |
740 | |
741 | // Returns the custom_call_target for CustomCall. |
742 | // Precondition: opcode() == HloOpcode::kCustomCall |
743 | const string& custom_call_target() const; |
744 | |
745 | // Returns the config for the Outfeed instruction. |
746 | // Precondition: opcode() == HloOpcode::kOutfeed |
747 | const string& outfeed_config() const; |
748 | |
749 | // Returns the shape for the Outfeed instruction. |
750 | // Precondition: opcode() == HloOpcode::kOutfeed |
751 | const Shape& outfeed_shape() const; |
752 | |
753 | // Gets/sets the while_condition or while_body HloComputation for While. The |
754 | // setters should only be called by HloModule or HloComputation methods. |
755 | // |
756 | // Precondition: The instruction is a While instruction. |
757 | HloComputation* while_condition() const; |
758 | HloComputation* while_body() const; |
759 | void set_while_condition(HloComputation* while_condition); |
760 | void set_while_body(HloComputation* while_body); |
761 | |
762 | // Gets/sets the select or scatter HloComputation for SelectAndScatter. The |
763 | // setters should only be called by HloModule or HloComputation methods. |
764 | // |
765 | // Precondition: opcode() == HloOpcode::kSelectAndScatter. |
766 | HloComputation* select() const; |
767 | HloComputation* scatter() const; |
768 | void set_select(HloComputation* select); |
769 | void set_scatter(HloComputation* scatter); |
770 | |
771 | // Gets/sets the true and false HloComputation for Conditional. The setters |
772 | // should only be called by HloModule or HloComputation methods. |
773 | // |
774 | // Precondition: The instruction is a Conditional instruction. |
775 | HloComputation* true_computation() const; |
776 | HloComputation* false_computation() const; |
777 | void set_true_computation(HloComputation* true_computation); |
778 | void set_false_computation(HloComputation* false_computation); |
779 | |
780 | // Returns a string for the signature of this instruction if considered as a |
781 | // function, e.g. the signature of an F32 add is (F32, F32) -> F32. |
782 | string SignatureString() const; |
783 | |
784 | // Returns a debugging string that represents this instruction. |
785 | // |
786 | // (We express the default options using an overload rather than a default |
787 | // param because gdb ignores default params, but does resolve overloads.) |
788 | // |
789 | // TODO(b/73348663): Make ToString() adaptive to the size of the string by |
790 | // default, backing off on providing full information for very large strings, |
791 | // or provide a different name for a ToString-like function that does that. |
792 | string ToString() const { return ToString(HloPrintOptions()); } |
793 | string ToString(const HloPrintOptions& options) const; |
794 | |
795 | // Components of the ToString() representation: |
796 | |
797 | // Returns a string representation of the operand list. |
798 | string OperandsToString(const HloPrintOptions& options) const; |
799 | |
800 | // Returns string representation of op-specific attributes. |
801 | std::vector<string> ( |
802 | const HloPrintOptions& options) const; |
803 | |
804 | // As ToString, but returns a shorter string. |
805 | string ToShortString() const; |
806 | |
807 | // Returns a serialized representation of this instruction. |
808 | HloInstructionProto ToProto() const; |
809 | |
810 | // Returns a category for the HLO. This could be something like "convolution" |
811 | // or "elementwise". |
812 | string ToCategory() const; |
813 | |
814 | // Returns a logging instruction, if the output of this instruction is logged. |
815 | // |
816 | // Postcondition: retval == nullptr || retval->opcode() == HloOpcode::kTrace |
817 | HloInstruction* tracing() const; |
818 | void set_tracing(HloInstruction* trace_instruction); |
819 | |
820 | // Returns the channel id associated with the instruction. The id is |
821 | // shared between each Send/Recv pair and is globally unique to identify each |
822 | // channel. |
823 | // |
824 | // Precondition: opcode() == HloOpcode::kSend or HloOpcode::kRecv |
825 | int64 channel_id() const { return channel_id_; } |
826 | |
827 | // Returns the channel name associated with the instruction. The name is |
828 | // used to identify host Send/Recv operations. |
829 | // |
830 | // Precondition: opcode() == HloOpcode::kHostCompute |
831 | string channel_name() const { return channel_name_; } |
832 | |
833 | // Returns feature_index field associated with the instruction. The index |
834 | // represents the index of the feature dimension. |
835 | // |
836 | // Precondition: opcode() is one of kBatchNormTraining, kBatchNormInference, |
837 | // or kBatchNormGrad. |
838 | int64 feature_index() const { return feature_index_; } |
839 | |
840 | // Returns a epsilon value associated with the instruction. The is a small |
841 | // number added to the variance to avoid divide-by-zero error. |
842 | // |
843 | // Precondition: opcode() is one of kBatchNormTraining, kBatchNormInference, |
844 | // or kBatchNormGrad. |
845 | float epsilon() const { return epsilon_; } |
846 | |
847 | // Returns the infeed configuration string. The infeed configuration includes |
848 | // any metadata needed for the backend compiler (e.g., infeed buffer address) |
849 | // and is target-dependent. |
850 | string infeed_config() const { return infeed_config_; } |
851 | void set_infeed_config(const string& config) { infeed_config_ = config; } |
852 | |
853 | // Returns a tag to be used in tracing. |
854 | // |
855 | // Precondition: opcode() == HloOpcode::kTrace |
856 | string TracingTag() const; |
857 | |
858 | // Returns whether the instruction is a constant. |
859 | bool IsConstant() const; |
860 | |
861 | // Returns true if this instruction is fused, ie contained within a fusion |
862 | // instruction. |
863 | bool IsFused() const; |
864 | |
865 | // Returns the computation for this fused instruction. |
866 | // |
867 | // Precondition: opcode() == HloOpcode::kFusion |
868 | HloComputation* fused_instructions_computation() const; |
869 | |
870 | // Returns true if this instruction can be legally fused into a fusion |
871 | // instruction. |
872 | bool IsFusable() const; |
873 | |
874 | // Returns the root instruction of the fused expression contained within this |
875 | // fusion instruction. |
876 | // |
877 | // Precondition: opcode() == HloOpcode::kFusion |
878 | HloInstruction* fused_expression_root() const; |
879 | |
880 | // Returns the list of fused instructions inside this fusion instruction. The |
881 | // returned type is a range of HloInstruction*s. |
882 | // |
883 | // Precondition: opcode() == HloOpcode::kFusion |
884 | const tensorflow::gtl::iterator_range<UnwrappingIterator< |
885 | std::list<std::unique_ptr<HloInstruction>>::const_iterator>> |
886 | fused_instructions() const; |
887 | |
888 | const tensorflow::gtl::iterator_range< |
889 | UnwrappingIterator<std::list<std::unique_ptr<HloInstruction>>::iterator>> |
890 | fused_instructions(); |
891 | |
892 | // Gets the number of instructions inside this fusion instruction. |
893 | // |
894 | // Precondition: opcode() == HloOpcode::kFusion |
895 | int64 fused_instruction_count() const; |
896 | |
897 | // Returns the fused parameter instruction in this fusion instruction |
898 | // corresponding to the given parameter number. |
899 | // |
900 | // Precondition: opcode() == HloOpcode::kFusion |
901 | HloInstruction* fused_parameter(int64 parameter_number) const; |
902 | |
903 | // Returns the vector of fused parameters inside this fusion instruction. |
904 | // |
905 | // Precondition: opcode() == HloOpcode::kFusion |
906 | const std::vector<HloInstruction*>& fused_parameters() const; |
907 | |
908 | // Returns true if this instruction is a fusion instruction that generates |
909 | // multiple outputs. |
910 | const bool IsMultiOutputFusion() const { |
911 | return opcode() == HloOpcode::kFusion && |
912 | fused_expression_root()->opcode() == HloOpcode::kTuple; |
913 | } |
914 | |
915 | FusionKind fusion_kind() const { |
916 | CHECK_EQ(HloOpcode::kFusion, opcode_); |
917 | return fusion_kind_; |
918 | } |
919 | |
920 | void set_fusion_kind(FusionKind kind) { |
921 | CHECK_EQ(HloOpcode::kFusion, opcode_); |
922 | fusion_kind_ = kind; |
923 | } |
924 | |
925 | // Returns the sharding applied to this operator. |
926 | // REQUIRES: has_sharding() is true. |
927 | const HloSharding& sharding() const { |
928 | CHECK(has_sharding()); |
929 | return *sharding_; |
930 | } |
931 | // Returns the sharding applied to this operator, or default_ if none exists. |
932 | const HloSharding& sharding_or_default(const HloSharding& default_) const { |
933 | return sharding_ ? *sharding_ : default_; |
934 | } |
935 | // Returns the sharding unique device, if any. |
936 | tensorflow::gtl::optional<int64> sharding_unique_device() const { |
937 | if (sharding_ == nullptr || !sharding_->HasUniqueDevice()) { |
938 | return tensorflow::gtl::optional<int64>(); |
939 | } |
940 | return sharding_->UniqueDevice().ValueOrDie(); |
941 | } |
942 | // Sets the sharding of this operator. Should only be called by HloModule or |
943 | // HloComputation methods. |
944 | void set_sharding(const HloSharding& sharding) { |
945 | sharding_ = MakeUnique<HloSharding>(sharding); |
946 | } |
947 | // Remove any sharding from this operator. |
948 | void clear_sharding() { sharding_ = nullptr; } |
949 | // Return true if this operator has a sharding assigned. |
950 | bool has_sharding() const { return sharding_ != nullptr; } |
951 | |
952 | // Adds a new operand the fusion instruction. |
953 | HloInstruction* AddFusionOperand(HloInstruction* new_operand); |
954 | |
955 | // Merges the fused instructions from 'instruction_to_merge' into the |
956 | // fused instruction set of 'this', updating operands as necessary. |
957 | // |
958 | // Precondition: opcode() == HloOpcode::kFusion |
959 | // Predondition: 'instruction_to_merge' must be an operand of 'this'. |
960 | void MergeFusionInstruction(HloInstruction* instruction_to_merge); |
961 | |
962 | // Merges the fused instructions from instruction_to_merge into the fused |
963 | // instruction set of 'this' and generates multioutput fusion instructions. |
964 | // All the users of instruction_to_merge will be redirected to 'this' |
965 | // instruction. instruction_to_merge will be removed from its parent |
966 | // computation. |
967 | // |
968 | // Precondition: opcode() == HloOpcode::kFusion |
969 | void MergeFusionInstructionIntoMultiOutput( |
970 | HloInstruction* instruction_to_merge); |
971 | |
972 | // Fuses the given instruction in this fusion instruction. instruction_to_fuse |
973 | // is cloned and the clone is placed in the fusion |
974 | // instruction. instruction_to_fuse is unchanged. Instruction is cloned rather |
975 | // than moved to cleanly handle the case where the instruction has a use |
976 | // outside the fusion instruction. Moving such an instruction into a fusion |
977 | // instruction would violate the single-result invariant of HLO instructions |
978 | // and significantly complicate code generation. |
979 | // |
980 | // Precondition: this->opcode() == HloOpcode::kFusion |
981 | HloInstruction* FuseInstruction(HloInstruction* instruction_to_fuse) { |
982 | return FuseInstructionInternal(instruction_to_fuse); |
983 | } |
984 | |
985 | // Fuses the given instruction in this fusion instruction and generate |
986 | // multioutput fusion instruction. A clone of the instruction_to_fuse will |
987 | // be part of the output of fusion instructions. The users of |
988 | // instruction_to_fuse will be redirected to this fusion instructions. |
989 | // instruction_to_fuse will be removed from its parent computation. |
990 | // |
991 | // Precondition: this->opcode() == HloOpcode::kFusion |
992 | HloInstruction* FuseInstructionIntoMultiOutput( |
993 | HloInstruction* instruction_to_fuse) { |
994 | return FuseInstructionInternal(instruction_to_fuse, /* add_output */ true); |
995 | } |
996 | |
997 | // Returns the start index in the given dimension for a slice node. |
998 | // |
999 | // Precondition: opcode() == HloOpcode::kSlice |
1000 | int64 slice_starts(int64 dimension) const { |
1001 | CHECK_EQ(HloOpcode::kSlice, opcode_); |
1002 | return slice_starts_[dimension]; |
1003 | } |
1004 | const std::vector<int64>& slice_starts() const { return slice_starts_; } |
1005 | |
1006 | // Returns the (exclusive) limit index in the given dimension for a slice |
1007 | // node. |
1008 | // |
1009 | // Precondition: opcode() == HloOpcode::kSlice |
1010 | int64 slice_limits(int64 dimension) const { |
1011 | CHECK_EQ(HloOpcode::kSlice, opcode_); |
1012 | return slice_limits_[dimension]; |
1013 | } |
1014 | const std::vector<int64>& slice_limits() const { |
1015 | CHECK_EQ(HloOpcode::kSlice, opcode_); |
1016 | return slice_limits_; |
1017 | } |
1018 | |
1019 | // Returns the stride in the given dimension for a slice node. |
1020 | // |
1021 | // Precondition: opcode() == HloOpcode::kSlice |
1022 | int64 slice_strides(int64 dimension) const { |
1023 | CHECK_EQ(HloOpcode::kSlice, opcode_); |
1024 | return slice_strides_[dimension]; |
1025 | } |
1026 | const std::vector<int64>& slice_strides() const { return slice_strides_; } |
1027 | |
1028 | // Returns the flag that describes whether a slice must be lowered into an |
1029 | // offset into the original operand. |
1030 | bool IsInPlaceSlice() const { return is_in_place_slice_; } |
1031 | |
1032 | // Sets and returns the flag that describes whether a slice must be lowered |
1033 | // into an offset into the original operand. |
1034 | bool SetIsInPlaceSlice(bool value) { |
1035 | is_in_place_slice_ = value; |
1036 | return value; |
1037 | } |
1038 | |
1039 | // Returns the size of the slice in the given dimension for a dynamic |
1040 | // slice node. |
1041 | // |
1042 | // Precondition: opcode() == HloOpcode::kDynamicSlice |
1043 | int64 slice_sizes(int64 dimension) const { |
1044 | CHECK_EQ(HloOpcode::kDynamicSlice, opcode_); |
1045 | return dynamic_slice_sizes_[dimension]; |
1046 | } |
1047 | const std::vector<int64>& dynamic_slice_sizes() const { |
1048 | CHECK_EQ(HloOpcode::kDynamicSlice, opcode_); |
1049 | return dynamic_slice_sizes_; |
1050 | } |
1051 | |
1052 | // Returns the number of exponent bits for a reduce-precision node. |
1053 | // |
1054 | // Precondition: opcode() == HloOpcode::kReducePrecision |
1055 | int32 exponent_bits() const { |
1056 | CHECK_EQ(HloOpcode::kReducePrecision, opcode_); |
1057 | return exponent_bits_; |
1058 | } |
1059 | |
1060 | // Returns the number of mantissa bits for a reduce-precision node. |
1061 | // |
1062 | // Precondition: opcode() == HloOpcode::kReducePrecision |
1063 | int32 mantissa_bits() const { |
1064 | CHECK_EQ(HloOpcode::kReducePrecision, opcode_); |
1065 | return mantissa_bits_; |
1066 | } |
1067 | |
1068 | // Returns data on the window in a windowed operation such as |
1069 | // convolution. |
1070 | const Window& window() const { |
1071 | CHECK(window_ != nullptr); |
1072 | return *window_; |
1073 | } |
1074 | |
1075 | // Sets the window data in a windowed operation such as convolution. |
1076 | void set_window(const Window& window) { |
1077 | window_ = MakeUnique<Window>(window); |
1078 | } |
1079 | |
1080 | // Returns the padding configuration for a pad node. |
1081 | // |
1082 | // Precondition: opcode() == HloOpcode::kPad |
1083 | const PaddingConfig& padding_config() const { |
1084 | CHECK(padding_config_ != nullptr); |
1085 | return *padding_config_; |
1086 | } |
1087 | |
1088 | // Returns data on the dimension numbers used for a convolution operation, |
1089 | // which may be a kConvolution instruction or a kCustomCall that implements a |
1090 | // convolution. |
1091 | const ConvolutionDimensionNumbers& convolution_dimension_numbers() const { |
1092 | CHECK(convolution_dimension_numbers_ != nullptr); |
1093 | return *convolution_dimension_numbers_; |
1094 | } |
1095 | |
1096 | // Sets the convolution dimension numbers on this instruction. In general you |
1097 | // shouldn't need to call this; instead, specify the convolution dimension |
1098 | // numbers when you create the instruction. |
1099 | void set_convolution_dimension_numbers( |
1100 | const ConvolutionDimensionNumbers& dnums) { |
1101 | convolution_dimension_numbers_ = |
1102 | MakeUnique<ConvolutionDimensionNumbers>(dnums); |
1103 | } |
1104 | |
1105 | FftType fft_type() const { |
1106 | CHECK_EQ(HloOpcode::kFft, opcode_); |
1107 | return fft_type_; |
1108 | } |
1109 | |
1110 | const std::vector<int64>& fft_length() const { |
1111 | CHECK_EQ(HloOpcode::kFft, opcode_); |
1112 | return fft_length_; |
1113 | } |
1114 | |
1115 | // Returns the dump string of the convolution dimension numbers. |
1116 | string ConvolutionDimensionNumbersToString() const; |
1117 | |
1118 | // Returns data on the dimension numbers used for a dot operation. |
1119 | const DotDimensionNumbers& dot_dimension_numbers() const { |
1120 | CHECK(dot_dimension_numbers_ != nullptr); |
1121 | return *dot_dimension_numbers_; |
1122 | } |
1123 | |
1124 | // Returns the dump string of the dot dimension numbers. |
1125 | string DotDimensionNumbersToString() const; |
1126 | |
1127 | const GatherDimensionNumbers& gather_dimension_numbers() const { |
1128 | CHECK(gather_dimension_numbers_ != nullptr); |
1129 | return *gather_dimension_numbers_; |
1130 | } |
1131 | |
1132 | tensorflow::gtl::ArraySlice<int64> gather_window_bounds() const { |
1133 | CHECK_EQ(opcode(), HloOpcode::kGather); |
1134 | return gather_window_bounds_; |
1135 | } |
1136 | |
1137 | // Returns the dump string of the gather dimension numbers. |
1138 | string GatherDimensionNumbersToString() const; |
1139 | |
1140 | // Returns the random distribution for this rng node. |
1141 | // |
1142 | // Precondition: opcode() == HloOpcode::kRng |
1143 | RandomDistribution random_distribution() const; |
1144 | |
1145 | // Clones the HLO instruction. The clone will have the same opcode, shape, and |
1146 | // operands. After creation the clone has no uses. "this" (the instruction |
1147 | // cloned from) is not changed. Suffix is the string to append to the name of |
1148 | // the instruction to form the name of the cloned instruction. |
1149 | // If the module pointer is not nullptr, it will be the module where |
1150 | // the cloned computations will be added to (in order to support deep |
1151 | // cloning). |
1152 | std::unique_ptr<HloInstruction> Clone(const string& suffix = "clone" , |
1153 | HloModule* module = nullptr) const; |
1154 | |
1155 | // Clones the HLO instruction as above but with new shape and operands. |
1156 | // If the module pointer is not nullptr, it will be the module where |
1157 | // the cloned computations will be added to (in order to support deep |
1158 | // cloning). |
1159 | std::unique_ptr<HloInstruction> CloneWithNewOperands( |
1160 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
1161 | HloModule* module = nullptr) const; |
1162 | |
1163 | // Returns the computations this instruction directly calls (if any). |
1164 | const std::vector<HloComputation*>& called_computations() const { |
1165 | return called_computations_; |
1166 | } |
1167 | |
1168 | // Replaces all called computations based on a map function. This is needed |
1169 | // when we clone hlo_computations and want to let the instructions to point |
1170 | // to the newly cloned nodes. |
1171 | void ReplaceCalledComputations( |
1172 | std::function<HloComputation*(HloComputation*)> map_function) { |
1173 | for (int64 i = 0; i < called_computations_.size(); ++i) { |
1174 | called_computations_[i] = map_function(called_computations_[i]); |
1175 | } |
1176 | } |
1177 | |
1178 | // Clears out the called computations. |
1179 | // |
1180 | // This is, in particular, necessary when inlining function bodies into their |
1181 | // caller. If there were side-effecting operations in the called computations, |
1182 | // the call itself is considered side-effecting and thus cannot be removed. By |
1183 | // clearing out the computations, we reflect the fact that all side-effecting |
1184 | // properties have been reflected in the caller, and make the call HLO |
1185 | // removable. |
1186 | void ClearCalledComputations() { called_computations_.clear(); } |
1187 | |
1188 | // Returns true if this instruction performs an elementwise operation on |
1189 | // `operand_idx`-th operand. An instruction is elementwise on an operand iff, |
1190 | // after performing necessary implicit broadcast |
1191 | // (cs/IrArray::EmitArrayElementAddress), to compute the output at index |
1192 | // {i_0,i_1,...,i_n}, the only element required from the operand (if any) is |
1193 | // the element at {i_0,i_1,...,i_n}. |
1194 | // |
1195 | // Note on performance: when this instruction is kFusion, this method, in the |
1196 | // worst case, scans all fused instructions. We could speed this up by |
1197 | // caching. |
1198 | bool IsElementwiseOnOperand(int64 operand_idx) const; |
1199 | |
1200 | // Returns true if this instruction is elementwise on all its operands. |
1201 | bool IsElementwise() const; |
1202 | |
1203 | // Returns true if this elementwise instruction implicitly broadcasts operand |
1204 | // `operand_idx`. |
1205 | // |
1206 | // Precondition: this instruction should be an elementwise operation. |
1207 | bool ImplicitlyBroadcastsOperand(int64 operand_idx) const; |
1208 | |
1209 | // Returns true if this instruction is binary and elementwise. |
1210 | bool IsElementwiseBinary() const; |
1211 | |
1212 | // Returns whether this instruction may reuse elements of its `i`th operand. |
1213 | bool ReusesOperandElements(int64 i) const { |
1214 | return OperandElementUse(i) == UseKind::kReuse; |
1215 | } |
1216 | |
1217 | // Returns the indices that the given operand appear in the operand list of |
1218 | // this instruction. Note that an instruction can use the same operand |
1219 | // multiple times. |
1220 | std::vector<int64> OperandIndices(const HloInstruction* operand) const; |
1221 | |
1222 | // Convenience helper for ShapeUtil::InsertedOrDeleted1SizedDimensions. If |
1223 | // this reshape merely inserts or deletes 1-sized dimensions, return the input |
1224 | // indices of the deleted dimensions and the output indices of the inserted |
1225 | // dimensions. |
1226 | // |
1227 | // Precondition: this op must be a reshape. |
1228 | std::tuple<bool, std::vector<int64>, std::vector<int64>> |
1229 | ReshapeMerelyInsertsOrDeletes1SizedDimensions() const; |
1230 | |
1231 | // Gets/sets the string identifier for this instruction. |
1232 | const string& name() const { return name_; } |
1233 | void set_name(tensorflow::StringPiece name) { name_ = name.ToString(); } |
1234 | |
1235 | // Use the given NameUniquer to select a unique name for the instruction based |
1236 | // on the instruction's existing name. |
1237 | void UniquifyName(NameUniquer* name_uniquer); |
1238 | |
1239 | // Set the unique id for this instruction to "id" |
1240 | void SetUniqueId(int id) { |
1241 | CHECK_EQ(unique_id_, -1); // Should not be assigned already |
1242 | CHECK_GE(id, 0); |
1243 | unique_id_ = id; |
1244 | } |
1245 | |
1246 | // Return the unique ID assigned to this node via SetUniqueId (or -1 |
1247 | // if no id has been assigned yet). |
1248 | int unique_id() const { return unique_id_; } |
1249 | |
1250 | // Sets the debug metadata for this instruction. |
1251 | void set_metadata(const OpMetadata& metadata) { metadata_ = metadata; } |
1252 | const OpMetadata& metadata() const { return metadata_; } |
1253 | |
1254 | // Set/get the computation containing this instruction. set_parent should only |
1255 | // be called by HloComputation methods which add/remove instructions to |
1256 | // computations. |
1257 | void set_parent(HloComputation* computation) { parent_ = computation; } |
1258 | const HloComputation* parent() const { return parent_; } |
1259 | HloComputation* parent() { return parent_; } |
1260 | |
1261 | // Returns the module for this instruction. |
1262 | HloModule* GetModule() const; |
1263 | |
1264 | // Returns whether we could assign input and output layouts to this |
1265 | // instruction to make it a bitcast. |
1266 | bool CouldBeBitcast() const; |
1267 | |
1268 | // Get/Set the number of partitions per outer dimension (in order, starting |
1269 | // with outer-most dimension first). Currently used by the parallel cpu |
1270 | // backend to partition HLOs into parallel tasks. |
1271 | // TODO(b/62783254) Replace these methods with a more general way to |
1272 | // annotate HLOs with backend-specific information. |
1273 | const std::vector<int64>& outer_dimension_partitions() const { |
1274 | return outer_dimension_partitions_; |
1275 | } |
1276 | void set_outer_dimension_partitions( |
1277 | const std::vector<int64>& outer_dimension_partitions); |
1278 | |
1279 | // Change the layout for an Constant Hlo instruction to match new_layout. For |
1280 | // tuple shaped constants shape_index is the path to the internal array |
1281 | // subshape whose layout needs to be changed. |
1282 | void RelayoutConstant(const Layout& new_layout, |
1283 | const ShapeIndex& shape_index = {}); |
1284 | |
1285 | private: |
1286 | enum class UseKind { kNoUse, kReuse, kUsePermutingElements, kUse }; |
1287 | |
1288 | // Helper class for computing OperandElementUse for kFusion. |
1289 | class FusionReusesParamElements; |
1290 | |
1291 | // See comments on Identical(). |
1292 | // eq_shapes() is used to check shapes for equality, and would normally be |
1293 | // expected to be ShapeUtil::Equals or ShapeUtil::Compatible, depending on |
1294 | // whether we want a layout-sensitive check or not. |
1295 | bool IdenticalSlowPath( |
1296 | const HloInstruction& other, |
1297 | const std::function<bool(const HloComputation*, const HloComputation*)>& |
1298 | eq_computations, |
1299 | const std::function<bool(const Shape&, const Shape&)>& eq_shapes) const; |
1300 | |
1301 | // Creates an n-ary elementwise operation. |
1302 | static std::unique_ptr<HloInstruction> CreateNary( |
1303 | const Shape& shape, HloOpcode opcode, |
1304 | tensorflow::gtl::ArraySlice<HloInstruction*> operands); |
1305 | |
1306 | // Appends operand to the list of operands and adds this instruction as a user |
1307 | // of the operand. |
1308 | void AppendOperand(HloInstruction* operand); |
1309 | |
1310 | // Adds a user for this instruction. |
1311 | void AddUser(HloInstruction* user); |
1312 | |
1313 | // Removes a user for this instruction. |
1314 | void RemoveUser(HloInstruction* user); |
1315 | |
1316 | // Internal constructor for a given opcode/shape, other fields must be filled |
1317 | // by factory methods. |
1318 | HloInstruction(HloOpcode opcode, const Shape& shape); |
1319 | |
1320 | // Fuses the given instruction into this fusion instruction. When add_output |
1321 | // is false (which is the default), instruction_to_fuse is cloned and the |
1322 | // clone is placed in the fusion instruction. instruction_to_fuse is |
1323 | // unchanged. |
1324 | // |
1325 | // When add_output is true, a clone of the instruction_to_fuse will be part |
1326 | // of the output of fusion instructions. The users of instruction_to_fuse |
1327 | // will be redirected to this fusion instructions. instruction_to_fuse will |
1328 | // be removed from its parent computation. |
1329 | // |
1330 | // Precondition: this->opcode() == HloOpcode::kFusion |
1331 | HloInstruction* FuseInstructionInternal(HloInstruction* instruction_to_fuse, |
1332 | bool add_output = false); |
1333 | |
1334 | // Clones the given instruction_to_fuse and insert the clone into this fusion |
1335 | // instruction. If add_output is true, a clone of instruction_to_fuse will |
1336 | // be in the output of the this fusion instruction (part of the tuple of the |
1337 | // fusion root). |
1338 | // |
1339 | // Precondition: opcode() == HloOpcode::kFusion |
1340 | HloInstruction* CloneAndFuseInternal(HloInstruction* instruction_to_fuse, |
1341 | bool add_output = false); |
1342 | |
1343 | // Clones a fusion instruction with a new shape and operands. |
1344 | std::unique_ptr<HloInstruction> CloneFusionWithNewOperands( |
1345 | const Shape& shape, tensorflow::gtl::ArraySlice<HloInstruction*> operands, |
1346 | HloModule* module = nullptr) const; |
1347 | |
1348 | // Returns true if this instruction can legally have the dimensions field |
1349 | // set. Used for checking precondition of dimensions field accessors. |
1350 | bool CanHaveDimensionsField() const; |
1351 | |
1352 | // Returns how this instruction uses elements of its `i`th operand. |
1353 | UseKind OperandElementUse(int64 i) const; |
1354 | |
1355 | int unique_id_; // Unique to this HloInstruction within a HloModule |
1356 | |
1357 | // Opcode for this instruction. |
1358 | HloOpcode opcode_; |
1359 | |
1360 | // Instruction operands. |
1361 | InstructionVector operands_; |
1362 | |
1363 | // The set of control predecessors of this instruction. |
1364 | std::vector<HloInstruction*> control_predecessors_; |
1365 | |
1366 | // The users of this instruction. Users are HLOs where this instruction is an |
1367 | // operand. The vector users_ and the set user_set_ contain identical |
1368 | // members. The set enables fast membership testing and the vector enables |
1369 | // fast, stable iteration. |
1370 | std::vector<HloInstruction*> users_; |
1371 | std::unordered_set<const HloInstruction*> user_set_; |
1372 | |
1373 | // The set of control successors of this instruction. |
1374 | std::vector<HloInstruction*> control_successors_; |
1375 | |
1376 | // The computation in which this instruction is contained. |
1377 | HloComputation* parent_ = nullptr; |
1378 | |
1379 | // Shape of outfeed request. |
1380 | Shape outfeed_shape_; |
1381 | |
1382 | // Result shape of this instruction. |
1383 | Shape shape_; |
1384 | |
1385 | // Literal, only present for kConstant. |
1386 | std::unique_ptr<Literal> literal_; |
1387 | |
1388 | // Constant index, only present for kGetTupleElement. |
1389 | int64 tuple_index_ = -1; |
1390 | |
1391 | // Dimensions present for some operations that require reshaping or |
1392 | // broadcasting, including Reshape, Reduce, ReduceWindow, and Reverse. |
1393 | std::vector<int64> dimensions_; |
1394 | |
1395 | // Describes the window in a windowed operation such as convolution. |
1396 | std::unique_ptr<Window> window_; |
1397 | |
1398 | // Describes the dimension numbers used for a convolution. |
1399 | std::unique_ptr<ConvolutionDimensionNumbers> convolution_dimension_numbers_; |
1400 | |
1401 | // Describes the dimension numbers used for a dot. |
1402 | std::unique_ptr<DotDimensionNumbers> dot_dimension_numbers_; |
1403 | |
1404 | std::unique_ptr<GatherDimensionNumbers> gather_dimension_numbers_; |
1405 | std::vector<int64> gather_window_bounds_; |
1406 | |
1407 | // Describes FFT type for an FFT instruction. |
1408 | FftType fft_type_ = FftType::FFT; |
1409 | |
1410 | // Indicates the FFT length for an FFT instruction. |
1411 | std::vector<int64> fft_length_; |
1412 | |
1413 | // Describes the [begin, end) index range for a slice. |
1414 | std::vector<int64> slice_starts_; |
1415 | std::vector<int64> slice_limits_; |
1416 | std::vector<int64> slice_strides_; |
1417 | |
1418 | // Describes whether the slice can be lowered to an offset into the operand. |
1419 | bool is_in_place_slice_ = false; |
1420 | |
1421 | // The bit sizes for a reduce-precision operation. |
1422 | int32 exponent_bits_ = 0; |
1423 | int32 mantissa_bits_ = 0; |
1424 | |
1425 | // Describes the [start, start + size) range size for a dynamic slice |
1426 | // ('start' is specified dynamically in the second operand of the operation). |
1427 | std::vector<int64> dynamic_slice_sizes_; |
1428 | |
1429 | // The padding configuration that describes the edge padding and interior |
1430 | // padding of this pad instruction. Only set for pad instructions. |
1431 | std::unique_ptr<PaddingConfig> padding_config_; |
1432 | |
1433 | // The type of the fusion. Used by kFusion only. |
1434 | FusionKind fusion_kind_; |
1435 | |
1436 | // The sharding, if one exists. |
1437 | std::unique_ptr<HloSharding> sharding_; |
1438 | |
1439 | // For parameter instructions this field holds the parameter number. |
1440 | int64 parameter_number_ = 0; |
1441 | |
1442 | // Name of a global symbol to call, only present for kCustomCall. |
1443 | string custom_call_target_; |
1444 | |
1445 | // Name to use for host send/recv channels, only present for kHostCompute. |
1446 | string channel_name_; |
1447 | |
1448 | // Estimate of the duration of a host computation in nanoseconds. |
1449 | int64 cost_estimate_ns_; |
1450 | |
1451 | // Computations called by this instruction. |
1452 | std::vector<HloComputation*> called_computations_; |
1453 | |
1454 | // Indices of computations in called_computations_ for instructions which call |
1455 | // multiple computations. |
1456 | enum { |
1457 | // kWhile computations. |
1458 | kBodyComputationIndex = 0, |
1459 | kConditionComputationIndex = 1, |
1460 | |
1461 | // kSelectAndScatter computations. |
1462 | kSelectComputationIndex = 0, |
1463 | kScatterComputationIndex = 1, |
1464 | |
1465 | // kConditional computations. |
1466 | kTrueComputationIndex = 0, |
1467 | kFalseComputationIndex = 1, |
1468 | }; |
1469 | |
1470 | // Outfeed configuration information, only present for kOutfeed. |
1471 | string outfeed_config_; |
1472 | |
1473 | // A trace instruction that consumes this instruction. |
1474 | // |
1475 | // Invariant: if trace_instruction_ != nullptr, trace_instruction has this as |
1476 | // an operand. |
1477 | HloInstruction* trace_instruction_ = nullptr; |
1478 | |
1479 | // The distribution requested for random number generation. |
1480 | // Only present for kRng. |
1481 | RandomDistribution distribution_; |
1482 | |
1483 | // A small float number added to the variance to avoid divide-by-zero error. |
1484 | // Only present for kBatchNormTraining. |
1485 | float epsilon_ = 0.0f; |
1486 | |
1487 | // An integer value representing the index of the feature dimension. |
1488 | // Only present for kBatchNormTraining. |
1489 | int64 feature_index_ = -1; |
1490 | |
1491 | // Represents a unique identifier for each Send/Recv instruction pair. |
1492 | // Only present for kSend or kRecv. |
1493 | int64 channel_id_ = -1; |
1494 | |
1495 | // The string representation of the infeed configuration. |
1496 | string infeed_config_; |
1497 | |
1498 | // String identifier for instruction. |
1499 | string name_; |
1500 | |
1501 | // Metadata for debugging. |
1502 | OpMetadata metadata_; |
1503 | |
1504 | // The number of partitions per outer dimension (listed in order from |
1505 | // outer-most dimension first). |
1506 | std::vector<int64> outer_dimension_partitions_; |
1507 | |
1508 | TF_DISALLOW_COPY_AND_ASSIGN(HloInstruction); |
1509 | }; |
1510 | |
1511 | string ToString(HloInstruction::FusionKind kind); |
1512 | StatusOr<HloInstruction::FusionKind> StringToFusionKind( |
1513 | const string& kind_name); |
1514 | |
1515 | // Custom (de)stringification functions for protos that live inside |
1516 | // HloInstruction. |
1517 | string PaddingConfigToString(const PaddingConfig& padding); |
1518 | string OpMetadataToString(const OpMetadata& metadata); |
1519 | string RandomDistributionToString(const RandomDistribution& distribution); |
1520 | StatusOr<RandomDistribution> StringToRandomDistribution(const string& name); |
1521 | |
1522 | std::ostream& operator<<(std::ostream& os, HloInstruction::FusionKind kind); |
1523 | |
1524 | // Map classes that guarantee a deterministic iteration order when the key is |
1525 | // an HloInstruction* or a const HloInstruction*. |
1526 | // To make the iteration order over the map deterministic, the comparator |
1527 | // should not be using the pointer values, but rather an intrinsic property of |
1528 | // the hlo. |
1529 | // |
1530 | // Note that this cannot be used for HLO instructions across multiple modules |
1531 | // since the id of HLO instructions are only unique within each HLO module. |
1532 | struct HloPtrComparator { |
1533 | bool operator()(const HloInstruction* const& lhs, |
1534 | const HloInstruction* const& rhs) const { |
1535 | return lhs->unique_id() < rhs->unique_id(); |
1536 | } |
1537 | }; |
1538 | |
1539 | template <typename ValueT> |
1540 | using HloInstructionMap = std::map<HloInstruction*, ValueT, HloPtrComparator>; |
1541 | |
1542 | template <typename ValueT> |
1543 | using ConstHloInstructionMap = |
1544 | std::map<const HloInstruction*, ValueT, HloPtrComparator>; |
1545 | |
1546 | using HloInstructionSet = std::set<HloInstruction*, HloPtrComparator>; |
1547 | using ConstHloInstructionSet = |
1548 | std::set<const HloInstruction*, HloPtrComparator>; |
1549 | |
1550 | } // namespace xla |
1551 | |
1552 | #endif // TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_ |
1553 | |